Fortified-Descent Simplicial Search Method: A General Approach
نویسنده
چکیده
We propose a new simplex-based direct search method for unconstrained minimization of a realvalued function f of n variables. As in other methods of this kind, the intent is to iteratively improve an n-dimensional simplex through certain reflection/expansion/contraction steps. The method has three novel features. First, a user-chosen integer m̄k specifies the number of “good” vertices to be retained in constructing the initial trial simplices–reflected, then either expanded or contracted–at iteration k. Second, a trial simplex is accepted only when it satisfies the criteria of fortified descent, which are stronger than the criterion of strict descent used in most direct search methods. Third, the number of additional function evaluations needed to check a trial reflected/expanded simplex for fortified descent can be controlled. If one of the initial trial simplices satisfies the fortified descent criteria, it is accepted as the new simplex; otherwise, the simplex is shrunk a fraction of the way towards a best vertex and the process is restarted, etc., until either a trial simplex is accepted or the simplex has shrunk to effectively a single point. We prove several theoretical properties of the new method. If f is continuously differentiable, bounded below and uniformly continuous on its lower level set and we choose m̄k the same value at all iterations k, then every cluster point of the generated sequence of iterates is a stationary point. The same conclusion holds if the function is continuously differentiable, bounded below, and we choose m̄k = 1 at all iterations k.
منابع مشابه
A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملA new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations
In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...
متن کاملTwo Settings of the Dai-Liao Parameter Based on Modified Secant Equations
Following the setting of the Dai-Liao (DL) parameter in conjugate gradient (CG) methods, we introduce two new parameters based on the modified secant equation proposed by Li et al. (Comput. Optim. Appl. 202:523-539, 2007) with two approaches, which use an extended new conjugacy condition. The first is based on a modified descent three-term search direction, as the descent Hest...
متن کاملApplying Online Gradient Descent Search to Genetic Programming for Object Recognition
This paper describes an approach to the use of gradient descent search in genetic programming (GP) for object classification problems. In this approach, pixel statistics are used to form the feature terminals and a random generator produces numeric terminals. The four arithmetic operators and a conditional operator form the function set and the classification accuracy is used as the fitness fun...
متن کاملShape Matching by Variational Computation of Geodesics on a Manifold
Klassen et al. [9] recently developed a theoretical formulation to model shape dissimilarities by means of geodesics on appropriate spaces. They used the local geometry of an infinite dimensional manifold to measure the distance dist(A,B) between two given shapes A and B. A key limitation of their approach is that the computation of distances developed in the above work is inherently unstable, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 10 شماره
صفحات -
تاریخ انتشار 1999